Math 30-1 Exemplars - SOLUTIONS

С

Question 1

g(x) shifts f(x) 4 right and 3 up All pts $(x,y) \rightarrow (x + 4, y + 3)$ So...(2, 1) \rightarrow (6, 4) Answer

Vertex

of f(x)

Question 3

y = f(x) is transformed to

 $y = \frac{1}{8}f(-x)$

Answer B (-) is inside, so

horiz. reflection

Isolate *y* to see vert. stretch

Question 5

The domain of y = f(x) is $x \ge -2$ After a horiz. str. of 2, the domain of y = p(x) is $x \ge -4$. All points move twice as far from the *y*-axis. The range of y = f(x) is $y \ge 0$ A horiz.str. does not affect the range (only x-coords get multiplied by 2) So the range of y = p(x) stays $y \ge 0$. The domain of y = g(x) is $x \in R$ A horiz. str. will not change this, so, the domain of y = q(x) is $x \in R$. The range of y = g(x) is $y \ge -4$

A horiz.str. does not affect the range (only x-coords get multiplied by 2) So the range of y = q(x) stays $y \ge -4$. Answer

3 5 4 7

Question 8

For the range of a graph we need to consider the lowest and highest points. For example f(x) has a lowest point where y = -4, and a highest point where y = 8, so its range is [-4, 8].

The lowest point on (f - g)(x) occurs when the lowest value of f(y = -4) is subtracted by the highest value on g, (y = 2) **That is, the lowest pt is y = -6.** The highest point occurs when the highest value of f(y = 8) is subtracted by the lowest value on g, (y = -4) **That is, the highest pt is y = 12.** Answer

Question 2

A, B, and C are all on the *x*-axis

So, transformation must be VERTICAL (stretch or reflection)

A is a horiz stretch – pts move 1/b times as far from *y*-axis. Not invariant.

B is a vertical stretch – all pts move *a* times as far from *x*-axis. (And A, B, C are all 0 units from it, so they don't move!) *invariant.*

В

C is a vertical shift – all pts move *k* units up, including A, B, and C. *Not invariant.*

D is a horizontal shift – all pts move h units right (or left if h is negative), including A, B, and C. *Not invariant*.

Question 4

f(x) has a vertex at (2, 3) g(x) is 4 units left of f(x), and 2 units down g(x) has a vertex at (-2, 1)From x-coord From *y*-coord +1 outside gives 2 to -2 x + 2 inside gives 3 to 1 vert. shift horiz. shift Answer Or... 8 5 2 2 8 4 5

Question 6

Reflection about y = x gives the INVERSE function, where all pts $(x,y) \rightarrow (y,x)$ So, the point A(3, -5) becomes (-5, 3).

Reflection about x = 0 (the y-axis) gives a horiz. refl., where $(x,y) \rightarrow (-x,y)$ So, the point A(3, -5) becomes (-3, -5).

Reflection about y = 0 (the *x*-axis) gives a vert. refl., where $(x,y) \rightarrow (x, -y)$ So, the point A(3, -5) becomes **.(3,5)**.

Question 7

If a graph is of a FUNCTION there will be 1 (and only 1) y value assigned for each x in the domain. (So graph 3 is NOT a function since when x = 0 it can be seen that there are three different y values. Look up "*Vertical Line Test*" for more info.) When graphing an inverse function, all pts $(x,y) \rightarrow (y,x)$. So for its inverse to be a function we are looking for graphs where each y in the range maps from 1 (and only 1) x. (Look up "*Horizontal Line Test for inverses*" for more info)

For graph 2 we can see that when y = 0 there are 3 different x values, so the inverse of graph 2 will NOT be a function.

However for graphs 1 and 3 there are no scenarios where a particular y Answer has more than one associated x. So the inverses of these graphs ARE **FUNCTIONS!** (even though graph 3 is not a function itself!)

Question 9

For the described transformations, all pts $(x,y) \rightarrow (4x, -\frac{1}{3}y)$ Note, we do NOT use the reciprocal of the horiz. str. factor unless we are writing an equation, in this case it would be $g(x) = \frac{1}{3}f(\frac{1}{4}x)$. Answer

So, the point (-3, 6) becomes (-12, 2)4 * (-3) $-\frac{1}{3} * 6$

Option 1 – Horizontal Stretch

Consider two points that line up horizontally such as A_1 and A_2 as shown below. Point A_2 is two times as far from the y-axis as A_1 . For a horiz. str. by factor of 2, the equation

Option 2 – Vertical Stretch

Consider two points that line up vertically such as B_1 and B_2 as shown above. Point B_2 is half as far from the x-axis as B_1 . For a vert. str. by factor of 1/2, the equation is g $(x) = \frac{1}{2}f(x)$ or $g(x) = \frac{1}{2}|x|$

Question 14

To determine an inverse function, we:

Question 16

At x = 3, the value of f is 6, and the value of *g* is 1.

So, the value of f(3)/g(3) is $\frac{6}{1} = 6$

Answer

Question 18

Question 11

Re-arrange: g(x) = f(x + 5) + 2, which shows a horiz. translation 5 units left and a vertical translation 2 units up. Answer

→ All pts
$$(x, y) \rightarrow (x - 5, y + 2)$$
 So, $(3, 1) \rightarrow (-2, y)$

Question 12

Re-arrange: $y = \sqrt{-\frac{1}{2}(x+8)}$, which shows a horiz. reflection, a horiz. str. factor of 2, and a horiz. translation 8 units left. Answer 2

You must factor the inside

В

3)

Question 15

When graphing an inverse function, all pts $(x,y) \rightarrow (y,x)$.

So, any invariant point would occur where the x and y coordinates are the same. That is, on the line y = x

To identify invariant pts, draw the line y = x on Answer B top of the graph of f.

 $(5)^2 + 6(5)$ Question 17 At x = 5, the value of f is 55, and the value of g is 1/3.

So, the value of h(5) = g(5) + f(g(5))

 $=\frac{1}{2}+(\frac{1}{3})^{2}+6(\frac{1}{3})$

(b) Sketch y = (2x + 1)/(7 - x) using calc, recall that horiz. asymp. occurs at the

(c) Sketch y = 2(7 - x) + 1 which simplifies to y = -2x + 15

$$k(x) = 2[(\sqrt{x-1})^2 + 3] - 5 \text{ simplifies to..}$$

= 2(x - 1 + 3) - 5
= 2(x + 2) - 5
= 2x + 4 - 5
= 2x - 1

Question 21 First note that f(3) = 5, then note that g(5) = 8**From the pt**(3, 5) **Answer B**

Question 22

Simplify:
$$h(x) = \frac{x^2 - 7x}{x - 2} + \frac{2x^2 + x}{x - 2}$$

= $\frac{x^2 - 7x + 2x^2 + x}{x - 2}$
= $\frac{3x^2 - 6x}{x - 2} \implies = \frac{3x(x - 2)}{x - 2} \implies = 3x$

Question 25

Reflection in the line y = x means find the **inverse**.

 $x = 3^{y+2}$ Switch x and y $y + 2 = log_3(x)$ Convert to log form, $y = log_3(x) - 2$ and solve for y Answer

Question 26

 $\frac{(5^3)^{x(x+1)}}{5^{3x-4}} = (5^2)^{x-5}$ Re-write all terms using a common base $\frac{5^{3x^2+3x}}{5^{3x-4}} = 5^{2x-10}$ Apply exponent rules to simplify $5^{(3x^2+3x)-(3x-4)} = 5^{2x-10}$ Set exponents equal $3x^2 + 3x - 3x + 4 = 2x - 10$ Answer

> x = -3(VA)

 $y = \log_2(x+3) -$

that's >1

 $y^{15} = 2^{x-2} + 5$

(choose any base

that's >1

y = 5

(HA)

(choose any base

 $3x^2 - 2x + 14 = 0$

Question 29

f(x) has a V.A. at x = -3

Think: You can't log 0 or negatives, so the domain of f is $x + 3 > 0 \rightarrow x > -3$

g(x) has a H.A. at y = 5

Think: The power term $2^{anything}$ can never be 0 or a negative (must be +), so the +5 after means the range of *g* is y > 5*Answer* **B**

Question 20

The domain of a rational function will be $x \in \mathbb{R}$ if the "bottom" (denominator) can never be 0. Given that b > 1...

Question 23

Given: g(3) = 4, and f(g(3)) = 8 But hey, this is, 4 So, f(4) = 8So, the corresponding point is (4, 8)

Question 24

Simplify: $h(x) = \frac{(\sqrt{x-3})^2}{(\sqrt{x-3})^2 - 25}$ For the domain of h(x), we must consider: $= \frac{x-3}{x-3-25}$ For the domain of h(x), we must consider: Before simplifying, h(x) had a radical component, so $x \ge 3$ The domain of the simplified func. / can't divide by 0 So, $x \ne 28$ Combined, we get $x \ge 3$, $x \ne 28$ Answer

Note, we do not need to consider the domain of g(x) on its own, that is $x \neq \pm 5$, because the inputs for g(x) are values of f, not "x".

Question 27

 $(2^3)^{3x+4} = (2^2)^{x-9}$ Re-write all terms using a common base

 $2^{9x+12} = 2^{2x-18}$ Apply exponent rules to simplify

9x + 12 = 2x - 18 Set exponents equal

$$7x = -30 \implies x = -30$$

Question 28

Question 30

h > 0

Since the V.A. is positive (for example, it could be something like x = 3, we know that h > 0

a < 0Since the graph "falls right", we know that a < 0. Graph rises right $y = log_2(x-3)$

Answer

В

4

 $L_{noise\ maker} = 127 db$ (Given)

$L_{difference} = 10 log 5000$

(Difference between loudness of noise maker and lawn mower) $\approx 164 \, db$

So, loudness of the lawn mower is:

 $\approx 164 db - 127 db$ Answer С

 $\approx 90 \, db$

Question 34

 $a^3 = 8$ $4^{3/2} = b$ Convert each to exp. form a = 2, b = 8 Evaluate $a = \sqrt[3]{8}$ $b = \sqrt[2]{4^3}$ Now find: $log_{2}8 + log_{8}2$ = 3 + 1/3Since $2^3 = 8$ Since $8^{1/3} = 2$ Answer 3. 3 3

Question 37

Simplify to $log_a b^{\frac{1}{3}}$ isolate $log_a b$ $= \frac{1}{3} \log_{a} b$ Given: This is 1.26 $=\frac{1}{3}(1.26)$ Answer 0 ≈ 0.42

Question 40

Since $P\left(-\frac{2}{3}\right) = 0$, one of the factors would be $(x + \frac{2}{2})$ or (3x + 2)Mult both terms by 3 Since P(0) = 12 the constant term is 12. (For example, think of the function $y = x^3 - 3x + 12$ Answer B

4 2

Question 41

Since $P\left(-\frac{2}{2}\right) = 0$, one of the factors would be $(x + \frac{2}{3})$ or (3x + 2)Mult both terms by 3 Since P(0) = 12 the constant term is 12. (For example, think of the function $y = x^3 - 3x + 12$) Answer B

Question 32

Question 35

 $log_7[(x+1)(x-5)] = 1$ Combine to a single log $7^1 = x^2 - 5x + 1x - 5$ Convert to exp. Form (and expand) $x^2 - 4x - 12 = 0$ Solve resulting (x-6)(x+2) = 0quadratic equation x = 6 or x = -2

Question 36

Question 38

 $a = \frac{6000}{(1.04)^6}$

 $6000 = a(1.04)^{\frac{3}{0.5}}$

 $y = ab^{\frac{1}{p}}$

...in how long period of time for Use $y = ab^{\overline{b}} <$ growth factor (here "1") 1 Kmult. growth end 7 amount initial factor amount

a = \$4742

answer

Question 33

 $log(3^{2x+1}) = log\left(\frac{1}{5}\right)^{x-3}$

"log both sides" to solve exp. eqn. where no common base is possible

 $(2x+1)log(3) = (x-3)log(\frac{1}{r})$ 2x(log3) + log3 = x(log0.2) - 3log(0.2)log3 + 3log0.2 = x(log0.2) - 2x(log3)x(log 0.2 - 2log 3) = log 3 + 3log 0.2

 $x = \frac{(log3 + 3log0.2)}{(log0.2 - 2log3)}$ $x \approx 0.98$

Check each equation by subst. into the original equation

 $log_7(6+1) + log_7(6-5) = 1$ $log_7(7) + log_7(1) = 1$ 1 + 0 = 1

$$og_7(-2+1) + log_7(-2-5) = 1$$

 $log_7(-1) + log_7(-7) = 1 \times can't log negatives - sol. is EXTRANEOUS$

Solve for "b": $32\ 450 = 15000b^8$ $2.16333 = b^8$ Isolate the power term take the eighth root $b = (2.16333)^{\frac{1}{8}} \quad \text{take the cign} \\ of both sides}$ b = 1.1012 THINK: b = 1 + growth rategrowth rate is right here! Answer C

ANSWER: 10.1%

$b = 1 + \frac{0.08}{2}$ (mult. growth factor) t = 3 (how long)

p = 0.5 (since compounded semi-annually)

Question 42

Fully factor: Step **O** Potential zeros: ± 1 , ± 3 Step **O** Test: $P(1) = 2(1)^3 - 3(1)^2 - 10(1) + 3$, which $\neq 0$ Similarly $P(-1) \neq 0$, but $P(3) = 2(1)^3 - 3(1)^2 - 10(1) + 3$, which = 0 So, (x - 3)is a factor. **Step ③** Synthetic division to find $(2x^3 - 3x^2 - 10x + 3) \div (x - 3) - 3 \begin{vmatrix} 2 & -3 & -10 & 3 \end{vmatrix}$ \downarrow -6 _9 **Step ④** Synth division gives remaining factor of : $3x^2 - 10x + 3$, which 2 0 doesn't factor. So use quad formula to find remaining roots. Answer

v = 6000 (end amount)

a = *wanted* (start amount)

1

Since the zeros of the function are -3, 1, and 5 (multiplicity 2), the equation that represents the function is $f(x) = \frac{-1}{a}(x+3)(x-1)(x-5)^2$. Use the *y*-intercept (0, 5) to find the leading coefficient.

 $5 = \frac{-1}{a}(0+3)(0-1)(0-5)^2$ $5 = \frac{-1}{a}(-75)$ $-\frac{1}{15} = \frac{-1}{a}$ ∴ $f(x) = -\frac{1}{15}(x+3)(x-1)(x-5)^2$

Question 45

Since
$$x + 2$$
 is a factor, $P(-2) = 0$
 $(-2)^3 + 3(-2)^2 + k(-2) + 4 = 0$
 $-8 + 12 - 2k + 4 = 0$
 $8 = 2k$
 $k = 4$
Answer
 4

Question 44

Since x + 2 is a factor, the remaining factor can be found by dividing $P(x) \div (x + 2)$

Question 46

 $P(-1) = 2(-1)^4 + 3(-1)^3 - 17(-1)^2 - 27(-1) - 9 = 0 \rightarrow (x+1) \text{ is a}$ factor

 $Q(x) = 2x^3 + x^2 - 18x - 9$

 $Q(3) = 2(3)^3 + 3^2 - 18(3) - 9 = 0 \rightarrow (x - 3)$ is a factor

 $2x^2 + 7x + 3 = (2x + 1)(x + 3)$

 $\therefore P(x) = (x+1)(x-3)(2x+1)(x+3)$

Question 48

Point **C**(4, 90) transforms to $(4,\sqrt{90})$ But $\sqrt{90} > 9$ (Max value of range) So point C is not possible on f(x)

Question 49

Draw horizontal lines at y = 0 and y = 1

(Invariant points where f(x) = 0 or 1)

Question 50

Invariant points where $f(x) = \mathbf{0}$ or $\mathbf{1}$

Question 51

Question 56

Question 60

 $x^2 + y^2 = 1$ Equation of Unit Circle $(k)^2 + (0.6)^2 = 1$

Question 57

 $\frac{3\pi}{2}r = 20.0m$

20 r =

 $\overline{3\pi}$

 $r \approx 4.2$

Answer

2

 $sec\theta = \frac{hyp}{adj}$

 $sec\theta = \frac{1}{-0.8}$

 $sec\theta = -\frac{5}{4}$

Answer

Α

(since unit circle)

4

3π

2

20.0m

 $k^2 = 1 - 0.36$

 $k^2 = 0.64$ Sq root both sides

 $k = 0 \pm 0.8$ k is (-) since P is in guad II

k = -0.8

Question 53

Question 54

There is a point of discontinuity when x = 7. \therefore f(x) = 2x - 1, for $x \neq 7$ y = 2(7) - 1y = 13So the point of discontinuity is (7, 13).

www.rtdmath.com **Question 58** $= \frac{\pi}{6} + \frac{12\pi}{6}$ And or subtract 1 rotation (2\pi) from 30° , that is $\frac{\pi}{6}$. $\theta = \frac{3}{4} * 2\pi$ $=\frac{13\pi}{6}$ Add another rotation... Answer $\frac{13\pi}{6} + \frac{12\pi}{6} = \frac{25\pi}{6}$ D

Question 61

Question 65 $\theta = \frac{3\pi}{4} - \frac{\pi}{6}$

 $=\frac{9\pi}{12}-\frac{2\pi}{12}$

 $=\frac{7\pi}{12}$

Answer

 $\left(\frac{5\pi}{6}, 1.5\right)$

 $\left(\frac{11\pi}{6}, -5.5\right)$

 $c = \approx 1.05$

8 0

A is at $\frac{\pi}{6}$

B is at $\frac{3\pi}{4}$

7

Answer

1 2

Question 68

 $x - 20^{\circ} = 60^{\circ}$

 $x^\circ = 80^\circ$

 $\frac{-7\pi}{6}$, 1.5

 $\left(\frac{-\pi}{6}, -5.5\right)$

 $c = \frac{-\frac{\pi}{6} + \frac{5\pi}{6}}{-\frac{\pi}{6} + \frac{5\pi}{6}}$

c is midway between the

min $\left(\frac{-\pi}{6}\right)$ and the max $\left(\frac{5\pi}{6}\right)$

Question 71

 $x - 20^{\circ} = cos^{-1}(1/2)$

Question 64

 $x^{2} + (7/10)^{2} = 1 \begin{array}{l} \text{Equation of} \\ \text{unit circle} \\ x^{2} = 1 - \frac{49}{100} \\ x^{2} = \sqrt{51/100} \\ x^{2} = 51/100 \end{array} \quad \text{Answer} \quad \textbf{A}$

Question 67

Question 70

Question 72

$tan2\theta = \frac{2tan\theta}{1 - tan^2\theta}$ $= \frac{2(-2)}{1 - (-2)^2}$ $= \frac{-4}{-3}$ Answer

Now,

Question 66

Question 69

$\frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \text{ and } \frac{11\pi}{6}$ $30^{\circ} 150^{\circ} 210^{\circ} 330^{\circ}$

Statement 1 is false

Statement **2** is false

(adding 2π to $\frac{\pi}{6}$ does not give the next angle, $\frac{5\pi}{6}$)

Statement **3** is **true**

<u>www.rtdmath.com</u>

Answer

Α

phase shift $=\frac{\pi}{3}$

Question 75

In step 2 both sides are

This is not allowed as

it's deletes solutions

Answer A

divided by " $cos\theta$ "

$period = \frac{2\pi}{b}$ $period = \frac{2\pi}{3}$ Answer

Question 76

Question	78

Question 84

Since θ is in Quadrant IV, $x = 3\sqrt{5}$ and $\cos \theta = \frac{3\sqrt{5}}{7}$.

 $=\left(\frac{3\sqrt{5}}{7}\right)\left(-\frac{1}{2}\right)+\left(-\frac{2}{7}\right)\left(\frac{\sqrt{3}}{2}\right)$

 $\cos\left(\theta - \frac{2\pi}{3}\right) = \cos\theta\cos\frac{2\pi}{3} + \sin\theta\sin\frac{2\pi}{3}$

 $=\frac{-3\sqrt{5}}{14}-\frac{2\sqrt{3}}{14}$

 $=\frac{-3\sqrt{5}-2\sqrt{3}}{14}$

Question 83

 $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \text{ etc.}$

Question 80

 $\cot^2 \theta = 1$

 $\cot \theta = \pm 1$

 $\tan \theta = \pm 1$

 $\theta = -109^{\circ}$ and -30° Enter the following function into the calculator. $y_1 = \left(2 - \frac{\sqrt{3}}{\cos x}\right) \left(\frac{1}{\cos x} + 3\right)$ A window that could be used is x: [-180, 0, 30], y: [-5, 5, 1].

Therefore, the general solution is $\theta = \frac{\pi}{4} + \frac{n\pi}{2}$, $n \in I$.

www.rtdmath.com

The x-intercepts are the solutions to the original equation.

Question 85

Question 86

Question 87

Answer 2

1 0

 $x^{2} + (-2)^{2} = 7^{2}$

 $x^2 = \sqrt{45}$

 $x = \pm 3\sqrt{5}$

Question 88

 $= {}_{9}C_{4} * {}_{7}C_{2} + {}_{9}C_{5} * {}_{7}C_{1} + {}_{9}C_{6}$ = 3612

Question 89 4 actors or 5 actors or 6 actors... (3 cases)

Answer D

www.rtdmath.com

Question 91

Question 92

On formula, coeff. of "x" (first term) is n - k. Since we need power of first term to be 4, and n = 10, that means k = 6.

$$t_{6+1} = {}_{10}C_6(3a)^{10-6}(-b^2)^6$$

= 210 * 81a⁴ * (b¹²) Answer
= 17010a⁴b¹²

Question 93

The exponent of the variable for a constant term must be zero; i.e., a^0 . ${}_8C_4(2a)^4 \left(\frac{1}{a}\right)^4$ $70(16a^4) \left(\frac{1}{a^4}\right)$ 1 120 Therefore, the constant term is 1 120.

Question 94

"n" is one less than the # of terms

 $t_{5+1} = {}_5C_5 * x^0 * 4^5$ Answer

Α

OR: # of terms = n + 1

n = 5

Constant term is LAST TERM in expansion:

 $t_6 = 1024$