Question 1

$\boldsymbol{g}(\boldsymbol{x})$ shifts $\boldsymbol{f}(\boldsymbol{x}) 4$ right and $\mathbf{3}$ up
All pts $(x, y) \rightarrow(x+4, y+3)$
So... $(2,1) \rightarrow(6,4)$
Answer

Question 3

$y=f(x)$ is transformed to

Isolate y to see $\quad(-)$ is inside, so vert. stretch

Question 5

The domain of $y=f(x)$ is $x \geq-2$
After a horiz. str. of 2 , the domain of
$y=p(x)$ is $x \geqq-4$. All points move twice as far from the y-axis.
The range of $y=f(x)$ is $y \geq 0$
A horiz.str. does not affect the range (only x-coords get multiplied by 2) So the range of $y=p(x)$ stays $\boldsymbol{y} \geq \mathbf{0}$.
The domain of $y=g(x)$ is $x \in R$
A horiz. str. will not change this, so, the domain of $y=q(x)$ is $\boldsymbol{x} \in \boldsymbol{R}$.

The range of $y=g(x)$ is $y \geq-4$
A horiz.str. does not affect the range (only x-coords get multiplied by 2) So the range of $y=q(x)$ stays $\boldsymbol{y} \geq \mathbf{- 4}$. Answer

\section*{| 3 | 5 | 4 | 7 |
| :--- | :--- | :--- | :--- |}

Question 8

For the range of a graph we need to consider the lowest and highest points.
For example $f(x)$ has a lowest point where $y=-4$, and a highest point where $y=8$, so its range is $[-4,8]$.

The lowest point on $(f-g)(x)$ occurs when the lowest value of $f(y=-4)$ is subtracted by the highest value on g, ($y=2$) That is, the lowest pt is $\boldsymbol{y}=\mathbf{- 6}$. The highest point occurs when the highest value of $f(y=8)$ is subtracted by the lowest value on g, $(y=-4)$ That is, the highest pt is $\boldsymbol{y}=12$. Answer C

Question 2

A, B, and C are all on the x-axis
So, transformation must be VERTICAL (stretch or reflection)
A is a horiz stretch - pts move $1 / b$ times as far from y-axis. Not invariant.
\mathbf{B} is a vertical stretch - all pts move a times as far from x-axis. (And A, B, C are all 0 units from it, so they don't move!) invariant.

Answer
\mathbf{C} is a vertical shift - all pts move k units up, including A, B, and C. B Not invariant.
\mathbf{D} is a horizontal shift - all pts move h units right (or left if h is negative), including A, B, and C. Not invariant.

Question 4

$\left.\begin{array}{l}f(x) \text { has a vertex at }(2,3) \\ g(x) \text { has a vertex at }(-2,1)\end{array}\right\} g(x)$ is 4 units left of $f(x)$, and 2 units down $g(x)$ has a vertex at $(-2,1)]$ From x-coord $x+2$ inside gives vert. shift 2 to $-2 \quad 3$ to 1 horiz. shift

Answer
From y-coord

\section*{| 4 | 5 | 2 | 8 | 2 | 8 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Question 6

Reflection about $y=x$ gives the INVERSE function, where all pts $(x, y) \rightarrow(y, x)$ So, the point $A(3,-5)$ becomes,$(-5,3)$.
Reflection about $x=0$ (the y-axis) gives a horiz. refl., where $(x, y) \rightarrow(-x, y)$ So, the point $A(3,-5)$ becomes,$(-\mathbf{3},-\mathbf{5})$,
Reflection about $y=0$ (the x-axis) gives a vert. refl., where $(x, y) \rightarrow(x,-y)$ So, the point $A(3,-5)$ becomes,$(3,5)$, Answer

\section*{| 5 | 3 | 1 |
| :--- | :--- | :--- |}

Question 7

If a graph is of a FUNCTION there will be 1 (and only 1) y value assigned for each x in the domain. (So graph 3 is NOT a function since when $x=0$ it can be seen that there are three different y values. Look up "Vertical Line Test" for more info.) When graphing an inverse function, all pts $(x, y) \rightarrow(y, x)$. So for its inverse to be a function we are looking for graphs where each y in the range maps from 1 (and only 1) x. (Look up "Horizontal Line Test for inverses" for more info)
For graph 2 we can see that when $y=0$ there are 3 different x values, so the inverse of graph 2 will NOT be a function.
However for graphs 1 and 3 there are no scenarios where a particular y Answer has more than one associated x. So the inverses of these graphs ARE FUNCTIONS! (even though graph 3 is not a function itself!)

Question 9

For the described transformations, all pts $(x, y) \rightarrow\left(4 x,-\frac{1}{3} y\right)$ Note, we do NOT use the reciprocal of the horiz. str. factor unless we are writing an equation, in this case it would be $g(x)=\frac{1}{3} f\left(\frac{1}{4} x\right)$.

Answer
So, the point $(-3,6)$ becomes $(-12,2)$

Question 10

Option 1 - Horizontal Stretch

Consider two points that line up horizontally such as $\boldsymbol{A}_{\mathbf{1}}$ and $\boldsymbol{A}_{\mathbf{2}}$ as shown below. Point $\boldsymbol{A}_{\mathbf{2}}$ is two times as far from the y-axis as $\boldsymbol{A}_{\mathbf{1}}$. For a horiz. str. by factor of 2 , the equation is $g(x)=f\left(\frac{1}{2} x\right)$ or $g(x)=\left|\frac{\mathbf{1}}{2} \boldsymbol{x}\right|_{6}$

Option 2 - Vertical Stretch

Consider two points that line up vertically such as $\boldsymbol{B}_{\mathbf{1}}$ and $\boldsymbol{B}_{\mathbf{2}}$ as shown above. Point $\boldsymbol{B}_{\mathbf{2}}$ is half as far from the x-axis as $\boldsymbol{B}_{\mathbf{1}}$. For a vert. str. by factor of $1 / 2$, the equation is g $(x)=\frac{1}{2} f(x)$ or $\boldsymbol{g}(\boldsymbol{x})=\frac{\mathbf{1}}{\mathbf{2}}|\boldsymbol{x}| \hookleftarrow$

Question 14

To determine an inverse function, we:
Re-write using y instead of $f(x)$
$y=2 x-3$
Interchange x and y
$x=2 y-3$
Isolate y
$x+3=2 y \quad \Rightarrow \quad \frac{2 y}{2}=\frac{x}{2}+\frac{3}{2}$
$\Rightarrow g(x)=\frac{1}{2} x+\frac{3}{2}$ Answer 1

Question 11

Re-arrange: $g(x)=f(x+5)+2$, which shows a horiz. translation 5 units left and a vertical translation 2 units up.

Answer
\rightarrow All pts $(x, y) \rightarrow(x-5, y+2)$
So, $(3,1) \rightarrow(-2,3)$
B

Question 12

You must factor the inside
Re-arrange: $y=\sqrt{-\frac{1}{2}(x+8)}$, which shows a horiz. reflection, a horiz. str.

Question 13

\rightarrow All pts $(x, y) \rightarrow\left(-\frac{1}{2} x, 2 y+3\right)$
So, $(-10,0) \rightarrow(\mathbf{5}, \mathbf{3})$

$$
-\frac{1}{2} *(-10) \quad 2 *(0)+3
$$

$(-4,-4) \rightarrow$
$(2,0) \rightarrow(-1,3)$
$(4,3) \rightarrow(-2,9)$
$(8,-1) \rightarrow(-4, \mathbf{1})$

Question 15

When graphing an inverse function, all pts $(x, y) \rightarrow(y, x)$.

So, any invariant point would occur where the x and y coordinates are the same. That is, on the line $y=x$

To identify invariant pts, draw the line $y=x$ on top of the graph of f.

Answer B

Question 17

$\underline{L}^{(5)^{2}+6(5)}$
At $x=5$, the value of f is 55 , and the value of g is $1 / 3$.

So, the value of $h(5)=g(5)+f(g(5))$

$$
=\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+6\left(\frac{1}{3}\right)
$$

(b) Sketch $y=(2 x+1) /(7-x)$ using calc, recall that horiz. asymp. occurs at the ratio of the lead coefficients

(c) Sketch $y=2(7-x)+1$ which simplifies to $y=-2 x+15$

Question 19

$$
\begin{aligned}
k(x) & =2\left[(\sqrt{x-1})^{2}+3\right]-5 \text { simplifies to... } \\
& =2(x-1+3)-5 \\
& =2(x+2)-5 \\
& =2 x+4-5 \quad \text { Answer } \\
& =\mathbf{2 x}-\mathbf{1}
\end{aligned}
$$

Question 21

First note that $f(3)=5$, then Answer
note that $g(5)=8$
B

Question 22

Simplify: $h(x)=\frac{x^{2}-7 x}{x-2}+\frac{2 x^{2}+x}{x-2}$

$$
=\frac{x^{2}-7 x+2 x^{2}+x}{x-2}
$$

$$
=\frac{3 x^{2}-6 x}{x-2} \Rightarrow=\frac{3 x(x-2)}{x-2} \Rightarrow \equiv 3 x
$$

Question 25

Reflection in the line $y=x$ means find the inverse.

$$
\begin{array}{ll}
x=3^{y+2} & \text { Switch } x \text { and } y \\
y+2=\log _{3}(x) & \text { Convert to log form, } \\
y=\log _{3}(x)-2 & \text { and solve for } y
\end{array}
$$

Answer A

Question 26

$\frac{\left(5^{3}\right)^{x(x+1)}}{5^{3 x-4}}=\left(5^{2}\right)^{x-5} \quad \begin{aligned} & \text { Re-write all terms using } \\ & \text { a common base }\end{aligned}$

Question 27

$\left(2^{3}\right)^{3 x+4}=\left(2^{2}\right)^{x-9}$ Re-write all terms using a common base
$2^{9 x+12}=2^{2 x-18}$ Apply exponent rules to simplify
$9 x+12=2 x-18$ Set exponents equal Answer

$$
\begin{equation*}
7 x=-30 \quad \Rightarrow \quad x \equiv-\frac{30}{7} \tag{B}
\end{equation*}
$$

Question 28

Question 29

$f(x)$ has a V.A. at $x=-3$
Think: You can't $\log 0$ or negatives, so the domain of f is $x+3>0 \rightarrow x>-3$
$g(x)$ has a H.A. at $y=5$
Think: The power term $2^{\text {anything }}$ can never be 0 or a negative (must be +), so the +5 after means the range of g is $y>5$ Answer B

Question 30

$h>0$

Since the V.A. is positive (for example, it could be something like $x=3$, we know that $h>0$

$\boldsymbol{a}<\mathbf{0}$

Since the graph "falls right", we know that $a<0$.

Question 31
$L_{\text {noise maker }}=127 \mathrm{db}$
(Given)
$L_{\text {difference }}=10 \log 5000$
(Difference between loudness of noise maker and lawn mower)

$$
\approx 164 d b
$$

So, loudness of the lawn mower is:

$$
\text { Answer } \approx 164 \mathrm{db}-127 \mathrm{db}
$$

C

$\approx 90 \mathrm{db}$

Question 34

$a^{3}=8 \quad 4^{3 / 2}=b$
Convert each to exp. form
$a=2, b=8 \quad$ Evaluate $a=\sqrt[3]{8} \quad b=\sqrt[2]{4^{3}}$

Now find:
$\log _{2} 8+\log _{8} 2$
$=3+1 / 3$
Since $2^{3}=8 \quad$ Since $8^{1 / 3}=2$

Answer
 3 • 3

Question 37

$$
\begin{aligned}
& \log _{a} b^{\frac{1}{3}} \quad \begin{array}{l}
\text { Simplify to } \\
\text { isolate } \log _{a} b
\end{array} \\
& =\frac{1}{3} \log _{a} b \\
& \begin{array}{l}
\text { Given: This } \\
\text { is } 1.26
\end{array} \\
& =\frac{1}{3}(1.26) \quad \text { Answer }
\end{aligned}
$$

≈ 0.42

Question 40

Since $P\left(-\frac{2}{3}\right)=0$, one of the factors would be $\left(\underset{1}{x}+\frac{2}{3}\right)$ OR $(3 x+2)$

Mult both terms by 3
Since $P(0)=12$ the constant term is 12. (For example, think of the function $\left.y=x^{3}-3 x+12\right)$

Answer B

Question 41

Since $P\left(-\frac{2}{3}\right)=0$, one of the factors would be $\left(\underset{1}{x}+\frac{2}{3}\right)$ OR $(3 x+2)$

Mult both terms by 3
Since $P(0)=12$ the constant term is 12. (For example, think of the function $\left.y=x^{3}-3 x+12\right)$

Answer

Question 32

$$
\begin{aligned}
& \log \left(\frac{2 \sin x}{\sin 2 x}\right) \\
& =\log \left(\frac{8 \sin x}{2 \sin x \cos x}\right) \quad \begin{array}{l}
\text { Apply double angle } \\
\text { identity for } \sin
\end{array} \\
& =\log \left(\frac{1}{\cos x}\right) \quad \text { simplify / cancel } \\
& =\log 1-\log (\cos x) \quad \text { Apply log law } \\
& =0-\log (\cos x) \quad \text { Answer }
\end{aligned}
$$

Question 33

$\log \left(3^{2 x+1}\right)=\log \left(\frac{1}{5}\right)^{x-3} \quad \begin{aligned} & \text { "log both sides" to solve } \\ & \text { exp. eqn. where no } \\ & \text { common base is possible }\end{aligned}$

$$
\begin{aligned}
& (2 x+1) \log (3)=(x-3) \log \left(\frac{1}{5}\right) \\
& 2 x(\log 3)+\log 3=x(\log 0.2)-3 \log (0.2) \\
& \log 3+3 \log 0.2=x(\log 0.2)-2 x(\log 3) \\
& x(\log 0.2-2 \log 3)=\log 3+3 \log 0.2 \\
& x=\frac{(\log 3+3 \log 0.2)}{(\log 0.2-2 \log 3)} \quad \boldsymbol{x} \approx \mathbf{0 . 9 8}
\end{aligned}
$$

Question 35

$\log _{7}[(x+1)(x-5)]=1 \quad \begin{aligned} & \text { Combine to } \\ & \text { single log }\end{aligned}$
$7^{1}=x^{2}-5 x+1 x-5$ Convert to exp.
$x^{2}-4 x-12=0$
$(x-6)(x+2)=0$
$x=6$ or $x=-2$

Check each equation by subst. into the
original equation
$\log _{7}(6+1)+\log _{7}(6-5)=1$
$\log _{7}(7)+\log _{7}(1)=1$
$1+0=1$
$\log _{7}(-2+1)+\log _{7}(-2-5)=1$
$\log _{7}(-1)+\log _{7}(-7)=1 \times$ can't log negatives -
sol. is EXTRANEOUS

Question 36

Use $y=a b^{\frac{t}{b}} 幺_{\text {period of time for }}^{\varkappa_{\text {in }}}$ growth factor (here "1")
end 1 Tmult.growth
amount initial factor amount

Solve for "b":
$32450=15000 b^{8}$
$2.16333=b^{8} \quad$ Isolate the power term

$$
b=(2.16333)^{\frac{1}{8}} \quad \begin{aligned}
& \text { take the eighth root } \\
& \text { of both sides }
\end{aligned}
$$

$b=1 . \underbrace{1012}$ THINK: $b=1+$ growt rate
growth rate is
right here!
ANSWER: 10.1 $\%$ Answer C

Question 38

$\begin{array}{ll}y=a b^{\frac{t}{p}} & y=6000 \text { (end amount) } \\ 6000=a(1.04)^{\frac{3}{0.5}} \quad a=\text { wanted (start amount) } & b=1+\frac{0.08}{2} \quad \begin{array}{l}\text { (mult. growth } \\ \text { factor) }\end{array} \\ a=\frac{6000}{(1.04)^{6}} \quad \begin{array}{c}\text { (how long) }\end{array} \\ \begin{array}{ll}\text { answer } \\ \text { and }\end{array} & p=0.5 \begin{array}{l}\text { (since compounded } \\ \text { semi-annually) }\end{array}\end{array}$

Question 39

Since -1 and -2 are zeros, $P(-1)=0$ and $P(-2)=1$ $2(-1)^{5}+3(-1)^{4}-10(-1)^{3}-21(-1)^{2}+k(-1)=0$ $-2+3+10-21-k=0$
$-10=k$
So, $P(x)=2 x^{5}+3 x^{4}-10 x^{3}-21 x^{2}-10 x$
2 . 5

Question 42

Fully factor: Step (1) Potential zeros: $\pm 1, \pm 3$ Step 2 Test: $P(1)=2(1)^{3}-3(1)^{2}-10(1)+3$, which $\neq 0$ similarly $P(-1) \neq 0$, but $P(3)=2(1)^{3}-3(1)^{2}-10(1)+3$, which $\equiv \mathbf{0}$ So, $(x-3)$ is a factor. Step 3 Synthetic division to find $\left(2 x^{3}-3 x^{2}-10 x+3\right) \div(x-3)-3 \left\lvert\, \begin{array}{lllll}-3 & -10 & 3\end{array}\right.$
Step 4 Synth division gives remaining factor of : $3 x^{2}-10 x+3$, which doesn't factor. So use quad formula to find remaining roots.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \Rightarrow x=\frac{-3 \pm \sqrt{3} 3^{2}-4(2)(-1)}{2(2)} \Rightarrow x=\frac{-3 \pm \sqrt{17}}{4}
$$

Answer

Question 43

Since the zeros of the function are $-3,1$, and 5 (multiplicity 2), the equation that represents the function is $f(x)=\frac{-1}{a}(x+3)(x-1)(x-5)^{2}$. Use the y-intercept $(0,5)$ to find the leading coefficient.
$5=\frac{-1}{a}(0+3)(0-1)(0-5)^{2}$
$5=\frac{-1}{a}(-75)$
$-\frac{1}{15}=\frac{-1}{a}$
$\therefore f(x)=-\frac{1}{15}(x+3)(x-1)(x-5)^{2}$

Question 45

Since $x+2$ is a factor, $P(-2)=0$
$(-2)^{3}+3(-2)^{2}+k(-2)+4=0$
$-8+12-2 k+4=0$

$$
\begin{gathered}
8=2 k \\
k=4
\end{gathered}
$$

Answer

Question 47

Question 49

Draw horizontal lines at $y=0$ and $y=1$ (Invariant points where $f(x)=0$ or 1)

Answer

$4 \quad 1 \quad 0$

1 invariant point

0 invariant points

Question 50

Invariant points where $f(x)=\mathbf{0}$ or $\mathbf{1}$
$\frac{1}{2} x-3=0$

$$
\frac{1}{2} x-3=1
$$

$\frac{1}{2} x=3$

$$
\frac{1}{2} x=4
$$

$x=6$
$x=8$
Pt $(\mathbf{8}, \mathbf{1})$

Question 51

For x-intercept set $y=\mathbf{0}$

$$
\mathbf{0}=-2 \sqrt{x+4}+3
$$

$$
2 \sqrt{x+4}=3
$$

$\sqrt{x+4}=3 / 2 \quad$ Sq root both sides $x+4=9 / 4$

Answer

$$
x=-7 / 4
$$

1 . $7 \quad 5$

Question 52

Question 53

Consider graph of $y=\frac{1}{x} \quad$ V.A. at $x=0$
H.A. at $y=0$

Shifted 1 unit left \& 3 units up
V.A. at $x=-1$ H.A. at $y=3$

Answer

28

Question 54
$f(x)=\frac{(3 x+1)(x-4)}{(x-4)(x+4)}$ Factor
$f(x)=\frac{(3 x+1)}{(x+4)} \quad$ P.D. at $x=4 \quad \begin{aligned} & \text { (from factor } \\ & \text { that cancels) }\end{aligned}$
$f(4)=\frac{3(4)+1}{(4)+4} \quad \begin{array}{ll}\text { subst. } x \text {-coord of PD into } \\ \text { simplified form of } f(x)\end{array}$

$$
=\frac{13}{8} \quad \text { Answer } \mathrm{D}
$$

Question 55

There is a point of discontinuity when $x=7$.
$\therefore f(x)=2 x-1$, for $x \neq 7$

$$
y=2(7)-1
$$

$$
y=13
$$

So the point of discontinuity is $(7,13)$.

Question 56

$f(x)=\frac{(3 x-2)(2 x+3)}{(1-x)(3 x-2)} \quad$ Simplify
$f(x)=\frac{2 x+3}{1-x}$
V.A. at $x=1$

For H.A., refer back to original function.
$f(x)=\frac{6 x^{2} \ldots}{-3 x^{2} \ldots} \quad \begin{aligned} & \text { H.A. at ratio of lead } \\ & \text { coefficients. (Same degree } \\ & \text { top } / \text { bottom) }\end{aligned}$
H.A. at $y=-2 \quad$ Answer D

Question 57

$$
\begin{aligned}
& \frac{3 \pi}{2}=\frac{20.0 m}{r} \quad \theta=\frac{3}{4} * 2 \pi \\
& \frac{3 \pi}{2} r=20.0 m \\
& r=\frac{20}{\frac{3 \pi}{2}} \quad \text { Answer } \\
& r
\end{aligned}
$$

Question 58 www.rtdmath.com

$\frac{\pi}{6}+2 \pi \quad$ Add or subtract 1 rotation (2π) from 30°, that is $\frac{\pi}{6}$.

$$
=\frac{\pi}{6}+\frac{12 \pi}{6}
$$

$$
=\frac{13 \pi}{6} \quad \begin{aligned}
& \text { Add another } \\
& \text { rotation... }
\end{aligned}
$$

Answer

$$
\frac{13 \pi}{6}+\frac{12 \pi}{6}=\frac{25 \pi}{6}
$$

Question 60

$\begin{array}{cc}x^{2}+y^{2}=1 & \begin{array}{l}\text { Equation of } \\ \text { Unit Circle }\end{array} \\ (k)^{2}+(0.6)^{2}=1 & \sec \theta=\frac{\text { hyp }}{\text { adj }} \\ k^{2}=1-0.36 & \sec \theta=\frac{1}{-0.8} \\ k^{2}=0.64 & \begin{array}{l}\text { Sq root both } \\ \text { sides }\end{array} \\ k=0 \pm 0.8 & \begin{array}{l}k \text { is }(-) \text { since } P \\ \text { is in quad II }\end{array} \\ \boldsymbol{k}=-\mathbf{0 . 8} & \text { sec } \boldsymbol{\theta}=-\frac{\mathbf{5}}{\mathbf{4}} \\ \text { Answer A A }\end{array}$

Question 61

Any pt on unit circle has coordinates $(\cos \theta, \sin \theta)$

$$
P\left(\cos 70^{\circ}, \sin 70^{\circ}\right)
$$

$P(0.34,0.94)$ Answer

Question 62
Any pt on unit circle has
coordinates $(\cos \theta, \sin \theta) \quad \frac{12}{13} \div \frac{-5}{13}$

$\sin \theta=\frac{12}{13} ; \cos \theta=-\frac{5}{13} ; \tan \theta=-\frac{12}{5} ; \csc \theta=\frac{13}{12} ; \sec \theta=-\frac{13}{5} ; \cot \theta=-\frac{5}{12}$

Question 63
In Quad II, so tan is (-)

$$
\begin{aligned}
\tan \theta= & \frac{\sin \theta}{\cos \theta} \\
= & \frac{-2 \cos \theta}{\cos \theta} \\
& =-2
\end{aligned}
$$

Now,
$\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
$=\frac{2(-2)}{1-(-2)^{2}}$
$=\frac{-4}{-3}$
Answer A

Question 66

$$
\begin{aligned}
& =\sin \left(\frac{11 \pi}{6}\right)+\cos \left(\frac{7 \pi}{4}\right) \\
& =-\frac{1}{2}+\frac{\sqrt{2}}{2} \quad=\frac{-1+\sqrt{2}}{2}
\end{aligned}
$$

Question 67

Since θ is a second quadrant angle, $x=-\sqrt{39}$.
Therefore, $\tan \theta=-\frac{5}{\sqrt{39}}$ or $\tan \theta=-\frac{5 \sqrt{39}}{39}$.

Question 70

If $\csc \theta=2 / \sqrt{3}$, then $\sin \theta=\sqrt{3} / 2$
\sin is (+) in I or II

$$
\begin{aligned}
\cot \theta & =\frac{\cos \theta}{\sin \theta} \quad \begin{array}{c}
\text { From unit circle, } \\
\text { when } y \text {-coord is } \sqrt{3} / 2
\end{array} \\
& =\frac{ \pm 1 / 2}{\sqrt{3} / 2}= \pm \frac{1}{2} \div \frac{2}{\sqrt{3}}= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

Answer C

Question 72

$$
\begin{aligned}
& \begin{array}{ll}
\text { Question } 65 & \theta=\frac{3 \pi}{4}-\frac{\pi}{6} \\
\text { A is } a t \frac{\pi}{6} &
\end{array} \\
& \text { A is at } \frac{\pi}{6} \\
& =\frac{9 \pi}{12}-\frac{2 \pi}{12} \\
& \text { B is at } \frac{3 \pi}{4} \\
& \text { Answer } \\
& =\frac{7 \pi}{12}
\end{aligned}
$$

Question 68

$x-20^{\circ}=\cos ^{-1}(1 / 2)$
$x-20^{\circ}=60^{\circ}$
Answer

$$
x^{\circ}=80^{\circ}
$$

80

Question 71

\boldsymbol{c} is midway between the $\min \left(\frac{-\pi}{6}\right)$ and the $\max \left(\frac{5 \pi}{6}\right)$ Answer

$$
c=\approx 1.05
$$

Question 69

Statement 1 is false

Statement 2 is false
(adding 2π to $\frac{\pi}{6}$ does not give the next angle, $\frac{5 \pi}{6}$)

Statement 3 is true
$\sin \frac{7 \pi}{6}=\frac{-1}{2} \cos \frac{5 \pi}{6}=\frac{-\sqrt{3}}{2}$
Answer

3

www.rtdmath.com

$$
b=\frac{2 \pi}{\text { period }}
$$

$$
d=\text { median dist }
$$

from P lot

$$
\begin{array}{ll}
b=\frac{2 \pi}{8}< & \begin{array}{ll}
4 \text { laps in } 32 \text { mins, } \\
\text { so 1 lap in 8mins }
\end{array} \\
b=\frac{\pi}{4} & d=200 m \\
& \text { Answer } D
\end{array}
$$

Question 73

$$
y=\sin \left[3\left(x+\frac{\pi}{3}\right)\right]+7
$$

Factor out the b value to see the phase shift

$$
\text { phase shift }=\frac{\pi}{3}
$$

period $=\frac{2 \pi}{b}$
period $=\frac{2 \pi}{3} \quad \begin{aligned} & \text { Answer }\end{aligned}$

Question 74

Question 76

NPVs where we'd divide by 0

$$
1-\cos ^{2} \theta \neq 0 \quad \sin ^{2} \theta \neq 0
$$

Identity: This is also $\sin ^{2} \theta$

$$
\begin{aligned}
& \sin ^{2} \theta \neq 0 \begin{array}{l}
\text { Sq root both } \\
\text { sides }
\end{array} \\
& \sin \theta \neq 0 \\
& \\
& \theta \neq 0, \pi, 2 \pi, \text { etc }
\end{aligned}
$$

Question 77

Left Side:

$$
=\frac{\sin \left(\frac{2 \pi}{3}\right)}{1-\cos \left(\frac{2 \pi}{3}\right.}
$$

$$
=\frac{\frac{\sqrt{3}}{2}}{1-\left(-\frac{1}{2}\right)}
$$

Answer

$$
=\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} \Rightarrow=\frac{\sqrt{3}}{2} * \frac{2}{3} \Rightarrow=\frac{\sqrt{3}}{3}
$$

Question 80
www.rtdmath.com
$\cot ^{2} \theta=1$
$\cot \theta= \pm 1$
$\tan \theta= \pm 1$
$\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$, etc.
Therefore, the general solution is $\theta=\frac{\pi}{4}+\frac{n \pi}{2}, n \in I$.

Question 83

$$
\theta=-109^{\circ} \text { and }-30^{\circ}
$$

Enter the following function into the calculator.
$y_{1}=\left(2-\frac{\sqrt{3}}{\cos x}\right)\left(\frac{1}{\cos x}+3\right)$
A window that could be used is $x:[-180,0,30], y:[-5,5,1]$.
The x-intercepts are the solutions to the original equation.

Question 85

$$
\begin{gathered}
=\underbrace{3 * 3 * 3 * 3 * 3 * 3}_{\text {Six games }} \\
=3^{6} \text { Answer } \mathbf{A}
\end{gathered}
$$

Question 78

All is good to step 6. There are no solutions for $\sin x=-3$, but $\sin =\frac{1}{2}$ has two solutions

Question 81

$2 \cos ^{2} x+\sin x-1=0$
$2\left(1-\sin ^{2} x\right)+\sin x-1=0$
$2-2 \sin ^{2} x+\sin x-1=0$
$2 \sin ^{2} x-\sin x-1=0$
$(2 \sin x+1)(\sin x-1)=0$
$\sin x=-\frac{1}{2}$ or $\sin x=1$
$\left\{-\frac{5 \pi}{6},-\frac{\pi}{6}, \frac{\pi}{2}\right\}$

Question 79

$\cos \theta=0 \quad \cos \theta=-1$
$\theta=90^{\circ}, 270^{\circ} \quad \theta=180^{\circ}$
Note: 90° is not within given solution domain

$$
\theta=180^{\circ} \text { or } 270^{\circ}
$$

Question 82

Factor to solve:

$$
\begin{array}{cl}
\cos \theta(2 \sin \theta-1)=0 \\
\downarrow & \searrow \\
\cos \theta=0 & \sin \theta=1 / 2
\end{array}
$$

$$
\theta=90^{\circ}, 270^{\circ}
$$

$\theta=30^{\circ}, 150^{\circ}$
General Solution options:

$$
\begin{array}{ll}
90^{\circ} \text { then every } 180^{\circ} & 90^{\circ} \text { then every } 360^{\circ} \\
30^{\circ} \text { then every } 360^{\circ} & 30^{\circ} \text { then every } 120^{\circ}
\end{array}
$$

$$
150^{\circ} \text { then every } 360^{\circ} \quad \text { Answer } D
$$

$$
\begin{aligned}
x^{2}+(-2)^{2} & =7^{2} \quad \text { Question 84 } \\
x^{2} & =\sqrt{45} \\
x & = \pm 3 \sqrt{5}
\end{aligned}
$$

www.rtdmath.com

Since θ is in Quadrant IV, $x=3 \sqrt{5}$ and $\cos \theta=\frac{3 \sqrt{5}}{7}$.

$$
\begin{aligned}
\cos \left(\theta-\frac{2 \pi}{3}\right) & =\cos \theta \cos \frac{2 \pi}{3}+\sin \theta \sin \frac{2 \pi}{3} \\
& =\left(\frac{3 \sqrt{5}}{7}\right)\left(-\frac{1}{2}\right)+\left(-\frac{2}{7}\right)\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{-3 \sqrt{5}}{14}-\frac{2 \sqrt{3}}{14} \\
& =\frac{-3 \sqrt{5}-2 \sqrt{3}}{14}
\end{aligned}
$$

Question 87

Answer $\mathbf{2}$

Question 88

No arranging / designating positions, so it's a COMB
"At most" two doctors means 0 or $\mathbf{1}$ or $\mathbf{2}$ doctors. (Three cases)

Answer B

Answer
23
(Ontario has one extra " 23 ")

Question 894 actors or 5 actors or 6 actors... (3 cases)

$$
={ }_{9} C_{4} *{ }_{7} C_{2}+{ }_{9} C_{5} *{ }_{7} C_{1}+{ }_{9} C_{6}=3612
$$

Question 90

\# of terms = 1 + degree
$a-5=6 \quad a=11$
$(2 x+3)^{6}$ First term has coefficient:
${ }_{6} C_{0} * 2^{6}$
coeff $=64$

Question 91

$t_{5+1}={ }_{8} C_{5} *\left(x^{3}\right)^{8-5}\left(\frac{1}{2 x^{2}}\right)^{5}$
$t_{6}=56\left(x^{3}\right)^{3}\left(\frac{1}{2 x^{2}}\right)^{5}$
$=56 * x^{9} * \frac{1}{32 x^{10}}$
$=\frac{56 x^{9}}{32 x^{10}}$
$=\frac{7}{4 x} \quad$ Answer B

Question 92

On formula, coeff. of " x " (first term) is $n-k$. Since we need power of first term to be 4, and $n=10$, that means $k=6$.

$$
\begin{aligned}
t_{6+1} & ={ }_{10} C_{6}(3 a)^{10-6}\left(-b^{2}\right)^{6} \\
& =210 * 81 a^{4} *\left(b^{12}\right) \\
& =17010 a^{4} b^{12}
\end{aligned}
$$

Question 93

The exponent of the variable for a constant term must be zero; i.e., a^{0}.
${ }_{8} C_{4}(2 a)^{4}\left(\frac{1}{a}\right)^{4}$
$70\left(16 a^{4}\right)\left(\frac{1}{a^{4}}\right)$
1120
Therefore, the constant term is 1120 .

Question 94

" n " is one less than the \# of terms
OR: \# of terms $=n+1$

$$
n=5
$$

Constant term is LAST TERM in expansion:

$$
\begin{aligned}
t_{5+1} & ={ }_{5} C_{5} * x^{0} * 4^{5} \\
t_{6} & =1024
\end{aligned}
$$

